Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy

نویسندگان

  • Wen Chen
  • Kajsa Roslund
  • Christopher L. Fogarty
  • Pirkko J. Pussinen
  • Lauri Halonen
  • Per-Henrik Groop
  • Markus Metsälä
  • Markku Lehto
چکیده

Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cavity ring-down spectroscopy sensor for detection of hydrogen chloride

A laser-based cavity ring-down spectroscopy (CRDS) sensor for measurement of hydrogen chloride (HCl) has been developed and characterized. The instrument uses light from a distributed-feedback diode laser at 1742 nm coupled to a high finesse optical cavity to make sensitive and quantifiable concentration measurements of HCl based on optical absorption. The instrument has a (1σ ) limit of detect...

متن کامل

External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation.

We combine an external cavity diode laser with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) using current modulation. With a finesse of 1600, we demonstrate noise equivalent absorption sensitivities of 4.1 x 10(-10) cm(-1) Hz(-1/2), resulting in sub-ppbv detection limits for Doppler-broadened transitions of CH(4) at 6132.3 cm(-1), C(2)H(2) at 6578.5 cm(-1) ...

متن کامل

Single-cell detection by cavity ring-down spectroscopy

The implementation of cavity ring-down spectroscopy in an optical fiber resonator extends the viability of this highly sensitive technique for label-free detection of biological species. By chemically treating the surface of discrete tapered sensing regions along the length of a physically extended optical fiber resonator, we show single-cell sensitivity arising from optical scattering of the e...

متن کامل

Optical heterodyne detection in cavity ring-down spectroscopy

Polarization-selective optical heterodyne detection is shown to enhance the practical sensitivity of cavity ring-down spectroscopy. Initial experiments demonstrate a signal-to-noise ratio above 31 dB. Minor improvements should yield shot-noise-limited operation. q 1998. Published by Elsevier Science B.V. All rights reserved.

متن کامل

Cavity-enhanced spectroscopy in optical fibers.

Cavity-enhanced methods have been extended to fiber optics by use of fiber Bragg gratings (FBGs) as reflectors. High-finesse fiber cavities were fabricated from FBGs made in both germanium/boron-co-doped photosensitive fiber and hydrogen-loaded Corning SMF-28 fiber. Optical losses in these cavities were determined from the measured Fabry-Perot transmission spectra and cavity ring-down spectrosc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016